[— g —— e e ———

AD-AD81 488 GENERAL RESEARCH CORP SANTA BARBARA CA SYSTEMS TECHNO=--ETC F/6 9/2
USING EXECUTIVE ASSERTIONS FOR TESTING.(U)
NOV 79 D M ANDREWS: J P BENSON Fll9620-79-C-0115
UNCLASSIFIED G6RC-TM=-2282 AFOSR=TR=80~0127

END
DATE
FILMED

4 80

X

off il ©
FEE
S EEFE]
EEEFETTIT
=

It e

125

T P T e = 11 0 ey Sy S S P b TR 2 > e G g G T i i L sog
/
5 MF“Mwuw“:‘wr:xﬁ r‘v_l“-'i,ais,at;’_?"-"‘?.fz‘;‘a?f#»f‘t;t R SRR e i e s e

Technical quihndum 2282

4

Using Executable Assertions
f.r Testlng

November 1979

SYSTEMSTEO!-NOLOGIESGFDLP

GENERAL
R ESEARCH @ CORPORATION

A SUBSIDIARY OF FLOW GENERAL INC.
P.O. Box 6770, Santa Barbara, California 93111

 aaiaabo o L o Lt B e el

mmmm; '

iagsos m'vn’pﬁ-ﬁf-‘\

S

[y B

S o 745 P

g\

ES

3
- UNQI&?:.IFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

’l @ acza caﬁ/ N it

)JSING EXECUTABLE ASSERTIONS FOR TESTING e

I TITLE (and Subtitie) . - ' [R S T & PERIOD ERED

R v
RS B -) #*

é,‘ / , Interim ‘

o / 6. PERFORMING ORG. REPORT NUMBER
. LR 8. CONTRACT OR GRANT NUMBER(s)
enson J ,75—“,‘ \/

F49620-79-C-0115

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PR NT, |) 5 ¥
General Research Corporation ’/ AREA & WORK UNIT NUMBERG:;

P. 0. Box 6770 .
Santa Barbara, CA 93111 61102F 23@6fa2(

11. CONTROLLING OFFICE NAME AND ADDRESS Y

1T RERORTBAT B
/]| November 179/
Air Force Office of Scientific Research/NM =

Bolling AFB, Washington, D. C. 20332 Five

14, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Y2 X UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for publlc release, dlstributlon unlimited.

CHO-TIN—2 982,

e

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) . -

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

One of the ways of assuring greater reliability of software is to improve test-
ing techniques. Three of the key problems associated with software testing are:
choosing adequate test cases, assuring correctness of the results, and reducing
the high cost of testing. Some degree of automation is required to help solve
these problems. By combining the automated capability of adaptive testing with
the use of executable assertions, it is possible to execute a program with a
large number of testcases over a wide range of input values. The usual goal of

adaptive testing is to maximize some performance value (objective function) for

DD ,%S%%, 1473 eoiTion oF 1 NOV 68 1S OBSOLETE yz 7 nﬁirzsn-vm

A ey ¢ frden L0 Gy RN et Tl e &

I A s o o 2. b

MUNCLASSIE’IE\@
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
20. Abstract cont.

ey L
———— .

the software by automated perturbation of the input parameters. This technique

fi only indirectly leads to locating errors, because of the time-consuming task of

A examining the usual output from the program. In software testing, the primary

E goal is to locate the maximum number of errors rather than maximize the perfor-

o mance value. Since software errors can be detected by executable assertions, these

assertions can be used to define an objective function for the Adaptive Tester
g so that a program can be tested automatically and a mapping made of its "error
& space." A search algorithm is used to generate new test cases based on past

performance data about the number of assertion violations, Software testing

can become much more efficient and effective through the use of adaptive test-
ing with assertions, because such extensive testing increases the possibility of]
finding any existing errors and of improving software reliability,

o

X SR e

.

"

*

L] - 1
L

i e .

USING EXECUTABLE ASSERTIONS FOR TESTING

D. M. Andrews and J. P.

Benson

General Research Corporation

P.0.

Box 6770

Santa Barbara, California 93111
805-964~7724 ext. 336

One of the ways of assuring greater reliability
of software is to improve testing techniques. Three
of the key problems associated with software testing
are: choosing adequate test cases, assuring correct-
ness of the results, and reducing the high cost of
testing. Some degree of automation is required to
help solve these problems. By combining the auto-
mated capability of adaptive testing with the use of
executable assertions, it is possible to execute a
program with a large number of testcasesyover a wide
range of input values. The usual goal of adaptive
testing is to maximize some performance value
(objective function) for the software by automated
perturbation of the input parameters. This technique
only indirectly leads to locating errors, because of
the time-consuming task of examining the usual output
from the program. In software testing, the primary
goal is to locate the maximum number of errors rather
than maximize the performance value. Since software
errors can be detected by executable assertionms,
these assertions can be used to define an objective
function for the Adaptive Tester so that a program
can be tested automatically and a mapping made of its
"error space.” A search algorithm is used to gen-
erate new test cases based on past performance data
about the number of assertion violations. Software
testing can become much more efficient and effective
through the use of adaptive testing with assertionms,
because such extensive testing increases the possi-
bility of finding any existing errors and of improv-
ing software reliability.

Introduction

Testing is one area of the software development
cycle where there is a need for vast improvement. It
is frequently the most costly part of the cycle and
the most time-consuming. What is needed is not to
put more money and time into testing, but to devise a
systematic method of exercising a program with a
sufficient number of input values over the entire
range of possible values in such a way that any
existing errors are discovered. To accomplish this
goal and to automate as much of the testing process
as possible, the techniques developed for adaptive
testing are being combined with the use of executable
arsertions for error detection.

Before software testing can be automated (and
become cost effective), two primary problems must be

solved: developing adequate test cases to identify
errors, and verifying the results of these test
cases. The problem of developing test cases has been

studied in the Adaptive Verification and Validation

research program.l The method has been to use
various search techniques adapted from optimization
theory and artificial intelligence research in order
to maximize a performance value (objective function
for the software). The original test cases (input
values) are either supplied by the tester or devel-
oped stochastically. These values are then altered,
through a feedback mechanism using heuristics, to
maximize the performance value.

AIR FORCE OFFICE OF SCIENTIFIC RESEAR
1

NOTICE OF TRANSMITTAL TO DDC
This technical report has
approved for puclic releas
Distribution is unlimited,
A. D. BLOSE

Technieal Information Officer

been revieweqd and is
e IAW AFR 190-12 (7b) .

In software testing, however, we are not so
much interested in maximizing performance as in
locating errors. The technique of maximizing a
performance function only indirectly helps to locate
errors in the software. Errors are usually discove-
red by examining the output of a program, which is a
time-consuming task. Since software errors can be
detected through the use of assertions, assertions
can be used as the objective function, thus allowing
the adaptive testing techniques to be applied to the
problem of testing software.

Executable Assertions

Almost any condition or specification can be
expressed using executable assertions. An executable
assertion is a logical expression which, if evaluated
to false, signals the violation of a specification
for the program. The logical operators of the
assertions have been extended to include the oper-
ators of first-order predicate calculus: implica-
tion, existence, and universal quantifiers. A
preprocessor translates the assertions into execu-
table statements. When the program is executed, the
logical expression in each assertion is evaluated.
If it is false, an error message is printed which
states the name of the module and the line number of
the assertion statement. In addition, a tabulation
is made of how many times an assertion is violated.

Some examples of assertions (including one
which is a call to the logical function OUTCHK) are
as follows:

INITIAL (VALUE .GE. 0.0 .AND. VALUE .LE. PP*TWOPI)
ASSERT (FM .LE. EA-SIN(EA) + EPS)

ASSERT (.SOME. I IN (1,N)(ARRAY(I) .GE. V))

FINAL (OUTCHK(MODE,VALUE,ORBEL,STATE))

Assertions have many uses and are extremely
valuable throughout the entire software cycle.
Ideally they should be written during the design
phase to state specifications about the variables
before any coding takes place. Later, during dynamic
tests, these same assertions can be made executable
to help in program debugging. Assertions can also be
left in the code as a form of documentation, because
they can contain much useful information about
variables (e.g., the expected range of values or, in
distributed systems, path or timing constraints).
These built-in specifications are a way of protecting
the software during deployment or maintenance from
modifications to the code which may alter the ex-
pected mode of operations.

Adaptive Testing

Adaptive testing is a technique for identifying
how well a program performs in response to changes in
its input values. The Adaptive Tester was developed
to test the response of simulated ballistic missile
defense programs to changes in a threat scenario.
The program's performance was defined by the number
of reentry vehicles which were not intercepted.

RCH (AFSC)

\

/“‘&Jc -'1."’

T L T e Y A I W Po . TR T,

i o e o

The Adaptive Tester uses the principles of
feedback and adaptive search to identify scenarios
which result in the maximum tolerable number of
reentry vehicles penetrating the defense. An initial
scenario 1is described and input to the test case
construction algorithm. This algorithm generates a
set of input values for the program being tested.
The program is executed and values are recorded which
measure its performance. The performance values are
then evaluated and compared with past performance
values. The change in performance values is then used
as input to the adaptive search algorithm which
constructs a new scenario. New input data is con-~
structed for this scenario and the program is run
again. This cycle continues until scenarios are
found which cause the maximum tolerable number of
reentry vehicles to penetrate the defense. The input
values which characterize each such scenario, and the
resulting performance values, define the "performance
boundary” of the program.

Methodology For Adaptive Testing With Assertions

The input parameters of a program can be
perturbed until areas with maximum errors (indicated
by assertion violations) are locateds This is done
in much the same way as the input parameters are
systematically perturbed to degrade the system
performance until the performance boundary is
reached. The first step, therefore, is to add
assertions to the code to be tested, if that has not
already been done. The important role of the asser-
tions in this type of testing cannot be emphasized
enough: they should be interspersed throughout the

code at appropriate placesz, there must be a suf-
ficient number of assertions to monitor each var-
iable, and they must correctly state the performance
requirements of the variables. In other words, the
success of this type of testing depends on the
validity and comprehensiveness of the assertions.

To assure the correctness of the assertionms,
the second step is to perform preliminary tests of
the program with varied input values. A frequent
result of this initial testing is that unsuspected
errors in the code are uncd>vered by the assertioms.
Any errors in the code or the assertions should be
corrected before continuing.

The third step is to construct a set of test
data by specifying the possible range of values for
the input variables. The initial value of a variable
is the minimum boundary value and the upper limit
(and final value) is the maximum specified value.
Next, some interval is chosen through which the value
of the variable will be stepped during the testing.
In this way, a "grid" of input values is defined over
the input space. Figure 1 shows the input space
boundaries for a program which was used as part of an
experiment to determine if it was feasible to merge
the adaptive testing methods with the use of exe-
cutable assertions for this type of testing. The
input values of the transit times were within the
range of 0 to 300 microseconds. The probability of
any one pulse request in the sequence of requests
being a search pulse was allowed to range between 0
and 1.

Once the range of input values is specified and
the interval chosen, the rest of the testing is
automated. The tester is relieved not only of the
chore of choosing new input data but also of the
tedious task of wading through reams of output to
verify the results of each test case. During the
fourth step, the program is executed once for each

set of input values and a mapping is made of the
error space, The input variables of the program are
defined as the independent variables, and the number
of assertions which become false when the program is
run with a particular set of input values is defined
as the dependent variable. Values of the dependent
variable define an objective function of errors over
the input space. By maximizing this objective
function, we can locate the values of the input
variables which cause the program to fail.

NUMBER OF ASSERTIONS VIOLATED

ol 9
L
E
TRANSIT TIME
(MICROSECONDS)

PROPORTION OF SEARCH PULSES
(PROBABILITY)

Figure l. Input Space Boundary

Having defined the error function in much the
same way as the performance function is defined for
the Adaptive Tester, the fifth step then is to use
the search algorithms of the Adaptive Tester to
locate values in the program's input variables which
cause the most errors to occur. The reason we search
for the area of maximum assertion violations is to
uncover as many errors as possible. Although some
errors will cause several assertions to be violated,
other errors are only indicated by a single assertion
failure; therefore, it may be necessary for the
entire input space be searched for all possible
violations. A major assumption in the research is
that errors will occur in clusters.

Figure 2 shows the organization of the
adaptive testing programs. A test case construction
algorithm takes the initial test data and contructs a
set of input values with which to run the program.

BASIC TEST CASE 3
TEST CONSTRUCTTON TEST PROGRAM |
DATA ALGORITHM 2
TEST
SEARCH ASSERTION
ALGORT THM "‘Fsl‘{Lg s EVALUATOR

Figure 2. Software for Adaptive Testing Using
Assertions

AN-51932

b i

"

Gl Gadic bl nag

i

T S e 0 Y g TP e T A T ISP AT g P30

These input data values are also recorded in the test
results file for use by the search algorithm in
altering the input data, The program is run and the
assertion evaluator evaluates the assertions as they
are executed and records any assertions that become
false. The test results file is then read by the
search algorithm, which computes new values for the
input variables based upon the assertions violated
and the past history of the tests. These new values
are input to the test case construction algorithm,
which forms a new set of input values for the program
and executes it.

Experience With Adaptive Testing Using Assertions

The process that generates a radar schedule in
a missile defense simulation was chosen as the test
object for a preliminary evaluation of this method of

testing software. This set of modules takes a
sequence of requests for radar pulses and from these
constructs a timing schedule for the radar. The
requests may be for search, special search, track, or
verify pulses, although for this experiment only
search and track pulses were used. Also included in
each request is the beam position (direction) in
which the pulse should be sent, the desired transmit
time, and the length of time between the transmit
time and the expected time of the reception of a
reflection from the object. This last value is the
"transit time” of the pulse. From this sequence of
requests, a schedule for the radar is constructed.
This schedule must not overlap transmitted pulses
with each other or with listening times ("receive
windows") and must allow sufficient time between
pulses and receive windows to switch beam positions,
i.e., "look" in another direction.

In order to show the error space more clearly,
two of the input variables were chosen as independent
variables in the experiment: the transit time for
pulses (i.e., the time between the transmission of
the pulse and the receive window) and the number of
search pulses in the input sequence. Random input
values were generated to simulate a real-time proc-
ess. The number of assertion violations for each set
of input values was tabulated during the testing for
use in constructing a three-dimensional grid.

Figure 3 shows the results from testing this
program with the set of input values previously
illustrated in Figure 1.

ASSERTION VIOLATIONS

TRANSIT

NUMBER OF
SEARCH
PULSES

Figure 3. Example of an Error Space Map

These results were generated by varying the mean of
the transit times for track pulses from 0 to 300
microseconds in steps of 30 microseconds and by
varying the probability of any one pulse's being a
search pulse from O to 1 in steps of O.1. The number
of assertions violated (for a particular pair of
values) is plotted in the vertical axis. The number
of assertions violated ranged from a maximum of 20 to
a minimum of 0. The assertion violations were the
result of latent errors in the program which had not
been discovered during all the previous types of
testing.

The “purpose of this preliminary experiment was
to determine what the error space of a program looked
like and whether it was feasible to wuse adaptive
search techniques to maximize an error function. The
results of this experiment showed that the “error
surface” from testing this set of modules was well
behaved. It contained maximums, minimums, and
gradients which could be used by various search
techniques to locate the values in the input space
which cause the most errors.

At the conclusion of this first experiment,
there were, however, many unanswered question. One,
for "example, concerns the size of the input space.
The range of values for the two input variables was
very small, and therefore it was relatively easy to
test a large sample of input sequences which vary
only slightly., With larger input spaces, sequences
of inputs which are very different would have to be
generated in order to cover the input space with a
reasonable number of test cases.

The main research question to be answered, of
course, is whether adaptive search techniques can be
applied to the testing of computer programs; that is,
whether errors can be located automatically. This
question can be broken down into a number of other
questions:

1. What does the error function of a typical
program look like and is it as well behaved as
the one in the preliminary experiment?

This includes the questions of whether the error
space of the program contains singularities,
whether it is multi-modal, and whether errors
are lumped or randomly distributed.

2. What search methods are applicable to locating
error maxima?

Depending upon the behavior of the error
function, one or more of the search methods
developed in the adaptive testing research could
be applied. In addition, there may be rules of
thumb, program-dependent or not, which could be
applied to make the search techniques more
efficient.

3. Are there other objective functions which can be
defined using assertions?

The objective function formed by merely summing
the number of assertions that were violated is a
crude one. Other possible ways in which to
construct the objective function include weight-
ing the assertions in some way or selecting a
subset of the assertions to use.

A second experiment on a much larger scale is
now in progress to delve further into the answers to
these questions. There are two approaches that could
be used to address the question regarding error

spaces: one method would be to examine programs which
contained errors, the other would be to seed a program
with errors. Since it would be difficult to select a
set of programs containing a representative class of
errors, the second method seemed preferable because
the number and types of errors could be varied. A
complex software program which computes orbital
elements was selected as the test object. Assertions
were added, and a set of errors for “seeding" the
program was generated using methods developed by

current research.l. The errors are representative of
those found in large programs in both type and

frequency of oc.currem:e,5 and the sites chosen for the
seeding were randomly selected.

The input values to the program will be con-
sidered two at a time to comstruct a three-dimensional
error space. The values of the other input variables
will remain fixed. The error function of the program
will be examined by first constructing a coarse grid
of input values as in the preliminary experiment.
Then the chosen search method and adaptive testing
software will be used to map the error space of the
program in more detail.

From the error functions derived from each
two~variable case, a complete error map will be
constructed for the program. The error space map will
give a good indication of the shape and character-
istics of the error function of the program. The
shape of the error function will determine which
search algorithms are most applicable to locating the
input values of the program which lead to the most
errors. The performance of the search algorithm
chosen for the experiment will be evaluated.

In regard to the question of applicability of
search methods, the most useful algorithm for
this application of the Adaptive Tester appears to be

the "complex search"” which was invented by Box6 as a
method for solving problems with nonlinear objective
functions subject to nonlinear inequality constraints.
The technique is as follows. Choose a set of points
at random and determine the value of the objective
function at each one. Then replace the point with the
worst performance value with another point which lies
on a line formed by the rejected point and the
centroid of the remaining points. A set of coeffi-
cients is then calculated to determine the exact
location of the new point. These coefficients
determine the degree of reflection, expansion,
shrinkage, contraction, and rotation to be applied in
forming the new set of points. The set of random
points (N + 1 if there are N dimensions to the
problem) is called a complex. New points are selected
for the complex using the above technique until a
solution is found. The advantage of this technique is
that it is somewhat immune to plateaus, disconti-
nuities, and surface irregularities.

As an initial step toward studying the third
question, the objective function has been constructed
in a different way for the second experiment. This
time the tabulation of assertion violations will
contain not only the total number of assertion
violations but also how many different assertions are
violated. The distinction is that the number of total
violations may represent one assertion that is in a
loop and is violated over and over, or it may repre-
sent the violation of many assertions. By keeping
track of the number of different assertions violated,
it is possible to determine whether more than one
assertion (and therefore most likely more than one
error) is involved in the total violations. This

provides a further refinement of the objective
function.

Conclusion

The current experiment will provide a second
evaluation of the effectiveness of using executable
assertions for software testing. The results will
give an indication of the properties of the error
function (e.g. continuity) for a typical computer
program which contains typical errors. Not only is
the error function of the program being explored, but
for each sample of errors the efficiency of the search
method is being evaluated. The resulting performance
of the search algorithm chosen for this experiment
will suggest other search methods which could be used
to examine the error space. In addition, the per-
formance of the adaptive search technique in locating
the maximum value of the error function will indicate
how much automation is possible in the testing of
computer programs.

Acknowledgement

This research was sponsored by the Air Force
Office of Scientific Research (AFSC), United States
Air Force, under Contract F49620-79~C-0115. The
United States Government is authorized to reproduce
and distribute reprints for governmental purposes
notwithstanding any copyright notation hereon.

References
1. D. W. Cooper, "Adaptive Testing,” Second Inter-

national Conference on Software Engineering, 13-15
October 1976, San Francisco, CA.

2. D. M. Andrews, "Using Executable Assertions for
Testing and Fault Tolerance"”, The Ninth Annual
International Symposium on Fault-Tolerant Com~
puting, 20-22 June 13979, Madison, WI.

3. J. Benson, S. Saib, "A Software Quality Assurance
Experiment,” Software Quality Assurance Workshop,
15-16 November 1978, San Diego, CA.

4. C. Gannon, R. Meeson, N. Brooks, "An Experimental
Evaluation of Software Testing," Final Report,
General Research Corporation, CR-1-854, May 1979.

5. T. A, Thayer et al., Software Reliability Study,
TRW Defense and Space Systems Group RADC-TR76-238,
Redondo Beach, CA, August 1976.

6. M. J. Box, "A New Method of Constrained Optimi-
zation and Comparison with Other Methods,”

Computer Journal, Vol. 8 (1965), pp. 42-52.

Accesaion For
NTIS GRA&L
DEC TAB
Unonmounced
Justification o —

By
_Distribution/
Avai)ability Codes

Availand/or
Dist special

lahbn

Y I T R = Ve T W)

T Sy e 1 Y T T

